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Abstract
We present a unified study of some aspects of quantum bicrossproduct algebras
of inhomogeneous Lie algebras, such as Poincaré, Galilei and Euclidean in
N dimensions. The action associated with the bicrossproduct structure allows
us to obtain a nonlinear action over a new group linked to the translations. This
new nonlinear action associates a dynamical system with each generator which
is the object of our study.

PACS numbers: 02.20.Uw, 02.10.Hh, 45.30.+s

1. Introduction

In a series of papers [1–5] we have dealt with the problem of the construction of
induced representations of quantum inhomogeneous algebras. In particular, in [4] we have
focussed our attention on quantum Hopf algebras having the structure of bicrossproduct
H = U(K)�� Uz(L), with U(K) a cocommutative Hopf algebra, Uz(L) a commutative
but noncocommutative Hopf algebra and K and L Lie algebras [6]. Remember that this
bicrossproduct structure is the deformed counterpart of the semidirect product of Lie groups
(H = L � K). In this paper, we want to utilize some of the techniques developed in the
above-mentioned papers to obtain relevant information about some aspects related to the
bicrossproduct algebras which are the object of our study.

We shall reinterpret the above bicrossproduct structure asH = U(K)�� Fun(Lz), because
the commutativity of UL allows us to identify it with the algebra of functions over a certain
group Lz. The bicrossproduct structure determines an action of U(K) on Fun(Lz) which at the
level of groups originates a nonlinear action of the group K on Lz. At the infinitesimal level
this last action is described by vector fields associated with the generators of K. These vector
fields give rise to one-parameter flows, some of them being linear (‘nondeformed’) and others
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nonlinear (‘deformed’). In other words, we can study some dynamical systems associated
with this action.

As is well known in the nondeformed case, the homogeneous space X = H/K is
diffeomorphic to R

N which is associated with L, N being the dimension of L. In the quantum
case the homogeneous space is now identified with Fun(Lz). However, we can study the
nonlinear action of K on Lz. Note that in the limit z → 0 we recover the linear action of
K on X.

We will consider the family of inhomogeneous algebras related by graded contractions
to the compact algebra so(N + 1) [7, 8]. They are called inhomogeneous Cayley–Klein
algebras. Among the elements of this family we find the Poincaré and the Galilei algebras
in (N − 1, 1) dimensions and the Euclidean algebra in N dimensions. The bicrossproduct
structure that shares these quantum algebras [9] allows us to present a unified study of the
properties mentioned above.

The organization of the paper is as follows. Section 2 presents a brief review of the
inhomogeneous Cayley–Klein algebras, their quantum deformations and their bicrossproduct
structure. The next section, the most important part of the work, is devoted to computing the
flow associated with the action, the invariant under this action that coincides with the Casimir
and the dynamical systems associated with it. In section 4 we present, as an example, the
case of N = 3 to illustrate the ideas introduced in the previous section. Some graphics show
the different leaves associated with the action and their foliations. We complete with some
conclusions and remarks.

2. Quantum Cayley–Klein algebras Uz

(
isoω2,ω3, . . . ,ωN(N )

)
The family of Cayley–Klein pseudo-orthogonal algebras is a set of (N + 1)N/2-dimensional
real Lie algebras characterized by N real parameters (ω1, ω2, . . . , ωN) and denoted by
soω1,ω2,...,ωN

(N +1) [7, 8]. In an appropriate basis (Jij )0�i<j�N the nonvanishing commutators
are

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij

with the subindices verifying 0 < i < j < k < N and ωij = �
j

s=i+1ωs . The generators can
be rescaled in such a way that the parameters ωi only take the values 1, 0 and −1. When all
the ωi are different from zero the algebra soω1,ω2,...,ωN

(N + 1) is isomorphic to some of the
pseudo-orthogonal algebras so(p, q) with p + q = N + 1 and p � q > 0. If some of the
coefficients ωi vanish the corresponding algebra is inhomogeneous and can be obtained from
so(p, q) by means of a sequence of contractions. In the particular case of ω1 = 0, the algebras
so0,ω2,...,ωN

(N + 1) can be realized as algebras of groups of affine transformations on R
N [7].

In this case, the generators J0i are denoted by Pi , stressing, in this way, their role as generators
of translations. The remaining generators Jij originate compact and ‘noncompact’ rotations.
These inhomogeneous algebras, henceforth denoted by isoω2,...,ωN

(N), are characterized by
the following nonvanishing commutators:

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij

[Jij , Pi ] = Pj [Jij , Pi] = −ωijPi 1 � i < j < k � N.

In [10, 11], simultaneous standard deformations (i.e. their associated classical r-matrices
are quasi-triangular [12]) for all the enveloping algebras U(soω1,ω2(3)) and U(soω1,ω2,ω3(4)),
respectively, were introduced. In [13], the case of U(isoω2,ω3,ω4(4)) was considered, and
the general case U(isoω2,ω3,...,ωN

(N)) (all of them standard deformations) was considered
in [14].
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It was proved in [9] that the standard quantum Hopf algebras Uz(isoω2,ω3,...,ωN
(N)) have

a structure of a bicrossproduct. Using a basis adapted to the bicrossproduct structure we
can describe together all these quantum algebras Uz(isoω2,ω3,...,ωN

(N)). In order to avoid
repetitions we use the following convention: the variation rank of i, j, k is 1, . . . , N − 1 and
the index N is treated separately. Besides, when two indices i, j appear in a generator it is
assumed that i < j . The commutation relations are

[Pi, Pj ] = 0 [Pi, PN ] = 0

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij

[Jij , JiN ] = ωijJjN [Jij , JjN ] = −JiN [Jik, JjN ] = ωjNJij

[Jij , Pk] = δikPk − δjkωijPi [Jij , PN ] = 0

(2.1)

[JiN , Pj ] = δij

(
1 − e−2zPN

2z
− z

2

N−1∑
s=1

ωsNP 2
s

)
+ zωiNPiPj [JiN, PN ] = −ωiNPi

and the coproduct is given by

�(Pi) = Pi ⊗ 1 + e−zPN ⊗ Pi �(PN) = PN ⊗ 1 + 1 ⊗ PN

�(Jij ) = Jij ⊗ 1 + 1 ⊗ Jij

�(JiN) = JiN ⊗ 1 + e−zPN ⊗ Jij + z

i−1∑
s=1

ωiNPs ⊗ Jsi − z

N−1∑
s=i+1

ωsNPs ⊗ Jis.

The bicrossproduct structure Uz(isoω2,ω3,...,ωN
(N)) = K�� L, with K = U(soω2,ω3,...,ωN

(N))

and L the commutative Hopf subalgebra generated by P1, P2, . . . , PN , is described by the
right action of K over L

Pi � Jjk = [Pi, Jjk] j < k i, j, k = 1, 2, . . . , N

with the commutators given by (2.1), and the left coaction of L over K, whose expression over
the generators of K is

Jij �= 1 ⊗ Jij

JiN �= e−zPN ⊗ JiN + z

i−1∑
s=1

ωiNPs ⊗ Jsi − z

N−1∑
s=i+1

ωsNPs ⊗ Jis.

3. One-parameter flows

In [9], the algebra Uz(TN) was considered as a noncommutative deformation of the Lie algebra
of the group of translations of R

N . However, here we can utilize the commutativity of Uz(TN),
interpreting it as the algebra of functions over a group, in such a way that we have the following
bicrossproduct decomposition:

Uz(isoω2,ω3,...,ωN
(N)) = U(soω2,ω3,...,ωN

(N))�� F(Tz,N )

where Tz,N is the space R
N equipped with the composition law

(α′
1, α

′
2, . . . , α

′
N−1, α

′
N)(α1, α2, . . . , αN−1, αN)

= (
α′

1 + e−zα′
N α1, α

′
2 + e−zα′

N α2, . . . , α
′
N−1 + e−zα′

N αN−1, α
′
N + αN

)
that equips it with a structure of N-dimensional Lie group. The group Tz,N has the structure
of a semidirect product of the additive groups R

N−1 and R

Tz,N ≡ R
N−1 >�R (a′, b′)(a, b) = (a′ + a � (−b), b′ + b)



5350 O Arratia and M A del Olmo

where the right action of R over R
N−1 is given by means of the usual product over each

component,

a � b = ezba a ∈ R
N−1 b ∈ R.

The generators Pi of Uz(TN) give in this context a global chart over Tz,N ,

Pi(α) = αi α ∈ Tz,N .

The structure of U(soω2,ω3,...,ωN
(N))-module algebra of F(Tz,N ) implies that an action of the

group SOω2,ω3,...,ωN
(N) on Tz,N is defined. At the infinitesimal level this action is described

by the vector fields

Ĵ ij = −Pj

∂

∂Pi

+ ωijPi

∂

∂Pj

Ĵ iN =
N−1∑
j=1

−
[
δij

(
1 − e−2zPN

2z
− z

2

N−1∑
s=1

ωsNP 2
s

)
+ zωiNPiPj

]
∂

∂Pj

+ ωiNPi

∂

∂PN

=
∑

j 	=i,N

− zωiNPiPj

∂

∂Pj

−
[

1 − e−2zPN

2z

− z

2

N−1∑
s=1

ωsNP 2
s + zωiNP 2

i

]
∂

∂Pi

+ ωiNPi

∂

∂PN

. (3.1)

Since only the generators J1N, J2N, . . . , JN−1N have deformed action the integration of
the equations of the fields Ĵ ij gives the well-known linear flows

�t
ij (α1, . . . , αi , . . . , αj , . . . , αN) = (α1, . . . , αi−1, α

′
i , αi+1, . . . , αj−1, α

′
j , αj+1, . . . , αN )

(3.2)

with

α′
i = Cωij

(t)αi − Sωij
(t)αj α′

j = ωijSωij
(t)αi + Cωij

(t)αj

where

Cω(t) = e
√−ωt + e−√−ωt

2
Sω(t) = e

√−ωt − e−√−ωt

2
√−ω

.

So, we have simple compact or noncompact rotations in the ij plane.
The computation of the flows associated with the ‘deformed’ fields Ĵ iN requires a more

careful analysis. Let us start by obtaining their invariants. Supposing that the differential form

η =
N∑

s=1

µs dPs (3.3)

verifies Ĵ iN�η = 0, the following equation is obtained:

∑
j 	=i,N

zωiNPiPjµj +

[
1 − e−2zPN

2z
− z

2

N−1∑
s=1

ωsNP 2
s + zωiNP 2

i

]
µi − ωiNPiµN = 0. (3.4)

Using this expression (N−1) invariant functions are obtained as follows. For the first invariant
we choose

µs = ωsNPsτ s = 1, 2, . . . , N − 1
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with τ a function to be evaluated. Hence, equation (3.4) reduces to

ωiNPi

[
1 − e−2zPN

2z
+

z

2

N−1∑
s=1

ωsNP 2
s

]
τ − ωiNPiµN = 0. (3.5)

From equation (3.5) we find the value of µN obtaining the differential form

η = τ


N−1∑

j=1

ωjNPj dPj +

(
1 − e−2zPN

2z
+

z

2

N−1∑
s=1

ωsNP 2
s

)
dPN




where τ plays the role of an integration factor. Solving the case N = 2 we get τ = 2 ezPN ,
which is proved to be valid for every N. The integration of the equations

∂h

∂Ps

= µs 1 � s � N

gives η = dh. By an appropriate choice of the integration constant, in order to have good
behaviour in the limit z → 0, we obtain

hω,z =
N−1∑
j=1

ωjNP 2
j ezPN +

cosh(zPN) − 1
z2

2

. (3.6)

This function is, in fact, invariant under the action of all the generators Jij . Indeed, it belongs
to the centre of the algebra Uz(isoω2,ω3,...,ωN

(N)) and is the Casimir Cz given in [9], but now
it appears in a natural way.

To obtain the other N −2 invariants we start fixing k ∈ {1, 2, . . . , N −1}−{i} and taking
µj = 0 if j 	= k,N , we get from expression (3.3) the differential form ηk = µk dPk +µN dPN .
Condition (3.4) applied to ηk establishes a relationship between µk and µN that allows us to
write

ηk = µk dPk + µkzPk dPN.

Choosing µk = ezPN the differential form is exact, that is, ηk = dhiN,k
ω,z , with

hiN,k
ω,z = Pk ezPN k ∈ {1, 2, . . . , N − 1} − {i}. (3.7)

To obtain the integral curves of Ĵ iN it is necessary to solve the system of N differential
equations

α̇j = −zωiNαiαj j 	= i, N

α̇i = −1 − e−2zαn

2z
+

z

2

N−1∑
s=1

ωsNα2
s − zωiNα2

i

α̇N = ωiNαi .

The invariants hiN,k
ω,z (3.7) allow us to remove N − 2 degrees of freedom, from hiN,k

ω,z (α) =
αk ezαN = βk we obtain αk = βk e−zαN , restricting the study of the N-dimensional system to
the following family of two-dimensional systems depending on the N parameters βk , ω and z

α̇i = −

1 − e−2zαN

2z
− z

2


∑

s 	=i,N

ωsNβ2
s


 e−2zαN +

z

2
ωiNα2

i




(3.8)
α̇N = ωiNαi .
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Because of the way in which the parameters βk appear grouped, the set of systems (3.8) only
depends on three parameters z, ωiN and ρ = ∑

s 	=i,NωsNβ2
s . The function hω,z (3.6) gives the

following invariant for the system (3.8):

ωiNα2
i ezαN + ρ e−zαN +

cosh(zαN) − 1
z2

2

. (3.9)

The description of the systems when z = 0 is trivial, since it reduces to the study of linear
systems analogous to those of the fields Ĵ ij . If z does not vanish the equations may be rescaled
considering

x(t) = zαi(t) y(t) = zαN(t)

and setting a = ωiN , b − 1 = z2ρ = z2∑
s 	=i,N ωsNβ2

s the system becomes

ẋ = − 1
2ax2 − 1

2 + 1
2b e−2y ẏ = ax. (3.10)

In this form the limit z → 0 cannot be studied, but as an advantage it depends on only two
parameters. The possibility of reabsorption of the parameter z follows from the fact that all
the Hopf algebras Uz(isoω2,ω3,...,ωN

(N)) are isomorphic (for fixed values of the parameters ωs)
whenever z is nonzero. The function (3.9) gives rise to the following invariant of (3.10):

ha,b = ax2 ey + ey + b e−y . (3.11)

The research of the fixed points of the system reveals that:

• if b � 0 the system does not have equilibrium points;
• if b > 0 there are three possibilities:

– if a < 0 then there is only one fixed point
(
0, 1

2 ln b
)

of hyperbolic character,

– if a = 0 then all the points such as
(
x, 1

2 ln b
)

are fixed points,

– if a > 0 there is only one equilibrium point
(
0, 1

2 ln b
)

of elliptic character.

Let us analyse in detail the case a > 0 and b > 0. Here, invariant (3.11) has a global minimum
value 2

√
b at

(
0, 1

2 ln b
)

and it is easy to check that ha,b takes arbitrarily high values over points
going to infinity in any direction. Since the orbits of the system (3.10) are the level curves
of ha,b all the orbits are bounded. Note that the point of equilibrium disappears in the limit
b → 0. Let us consider the integral curve γr passing through the point (0, r), with r > 1

2 ln b,
at the initial time. For small values of t > 0 the invariant allows us to obtain x in terms of y

ax = −
√

a e−y(er + b e−r − ey − b e−y) (3.12)

in such a way that substituting this in the second equation of the system (3.10) is enough to
do a quadrature. The final result gives the following expression for the curve γr :

γr(t) =
( −(er − b e−r )Sa(t)

(er + b e−r ) + (er − b e−r )Ca(t)
, ln

1

2

[
(er + b e−r ) + (er − b e−r )Ca(t)

])
. (3.13)

From (3.13) the flow associated with the system (3.10) is obtained provided a > 0 and b > 0

�t
a,b(x, y) =

(
(ax2 ey − ey + b e−y)Sa(t) + (2x ey)Ca(t)

(ax2 ey + ey + b e−y) + (−ax2 ey + ey − b e−y)Ca(t) + (2ax ey)Sa(t)
,

ln
1

2

[
(ax2 ey + ey + b e−y) + (−ax2 ey + ey − b e−y)Ca(t) + (2ax ey)Sa(t)

])
.

(3.14)
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x

y

a < 0 b > 0 a = 0 b > 0 a > 0 b > 0

a < 0 b = 0 a = 0 b = 0 a > 0 b = 0

a < 0 b < 0 a = 0 b < 0 a > 0 b < 0

Figure 1. Qualitative aspect of the orbits associated with the flow �a,b .

It is easy to prove that (3.14) is also valid for the remaining values of a and b. Note that, if the
parameters a and b are positive then the flow is defined globally, but this does not happen, in
general, for any other value of the parameters.

Figure 1 shows the qualitative form of the integral curves for different values of a and b.
Besides the reflection symmetry with respect to the vertical axis, it is worth noting the pair
of straight lines of equations x = 1/

√−a and x = −1/
√−a, which are present in the cases

a < 0 and b = 0, although they are not displayed in the figure, separating the lower bounded
orbits from the unbounded ones. Also note that when a > 0 and b = 0 all the curves are
obtained translating vertically the graphic of the function y = − ln(1 + ax2).

The preceding study allows us to write the flow �t
iN : Tz,N → Tz,N of the vector field

Ĵ iN (3.1). For its description it is convenient to introduce the functions F
ω,z
iN : Tz,N ×R → R,
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defined by

F
ω,z
iN (α, t) =

[
cosh(zαN) +

z2

2

N−1∑
s=1

ωsNα2
s ezαN

]

+

[
sinh(zαN) − z2

2

N−1∑
s=1

ωsNα2
s ezαN

]
CωiN

(t) +
[
zωiNαi ezαN

]
SωiN

(t).

Note that the first term can be written in terms of the invariant hω,z as

cosh(zαN) +
z2

2

N−1∑
s=1

ωsNα2
s ezαN = 1 +

z2

2
hω,z(α).

Writing the flow action as

�t
iN (α) = α′ (3.15)

we get

α′
i =

−
[
sinh(zαN) − z2

2

∑N−1
s=1 ωsNα2

s ezαN

]
SωiN

(t) +
[
zαi ezαN

]
CωiN

(t)

zF
ω,z
iN (α, t)

α′
N = 1

z
ln F

ω,z
iN (α, t)

α′
j = αj ezαN

F
ω,z
iN (α, t)

j 	= i, N.

The limit z → 0 can be obtained after considering the first order in z of the function F
ω,z
iN :

F
ω,z
iN (α, t) = 1 + z

[
ωiNSωiN

(t)αi + CωiN
(t)αN

]
+ o(z2)

and this result yields the known linear flow, consisting of ‘rotations’ around the origin of the
iN plane,

α′
i = CωiN

(t)αi − SωiN
(t)αN α′

N = ωiNSωiN
(t)αi + CωiN

(t)αN α′
j = αj .

4. Example: Uz

(
isoω2,ω3(3)

)
In the previous section Uz(isoω2,ω3,...,ωN

(N)) has been studied; now we consider the particular
case N = 3. The following discussion clarifies the concepts introduced up to now since
the three-dimensional nature of the group Tz3. It allows us to represent graphically all the
geometric constructions.

The Hopf algebra Uz(isoω2,ω3(3)) is generated by P1, P2, P3, J12, J13 and J23. The
commutators and the rest of the structure tensors are obtained after setting the corresponding
expressions of the previous section for N = 3. In this case, Uz(isoω2,ω3(3)) =Uz(soω2,ω3(3))��
F(Tz,3), where the group Tz,3 is characterized by the composition law

(α′
1, α

′
2, α

′
3)(α1, α2, α3) = (

α′
1 + e−zα′

3α1, α
′
2 + e−zα′

3α2, α
′
3 + α3

)
.

The translation generators constitute a system of global coordinates over Tz,3

P1(α1, α2, α3) = α1 P2(α1, α2, α3) = α2 P3(α1, α2, α3) = α3.



Dynamical systems and quantum bicrossproduct algebras 5355

Figure 2. Typical leaf (left) and foliation (right) of Tz,3 for the case (ω2 > 0, ω3 > 0; z > 0).

Figure 3. Leaf for (ω2 > 0, ω3 < 0, z < 0) (left). Foliation of Tz,3 (right).

With respect to these coordinates the action of SOω2,ω3 (3) on Tz,3, induced by the structure of
the Uz(soω2,ω3(3))-algebra module of F(Tz,3), is given by the vector fields

Ĵ 12 = −P2
∂

∂P1
+ ω12P1

∂

∂P2

Ĵ 13 = −
[

1 − e−2zP3

2z
+

z

2

(
ω13P

2
1 − ω23P

2
2

)] ∂

∂P1
− zω13P1P2

∂

∂P2
+ ω13P1

∂

∂P3

Ĵ 23 = −zω23P2P1
∂

∂P1
−
[

1 − e−2zP3

2z
+

z

2

(−ω13P
2
1 + ω23P

2
2

)] ∂

∂P2
+ ω23P2

∂

∂P3
.

The (generalized) distribution generated by these fields is integrable since they close the
algebra soω2,ω3(3). The invariant

hω,z = ω13P
2
1 ezP3 + ω23P

2
2 ezP3 +

[
sinh

(
z
2P3

)
z
2

]2

allows us to analyse easily the nature of the leaves of the foliation. The two-dimensional leaves
correspond to the connected components of the sets h−1

ω,z(t) ⊂ Tz,3, t ∈ R being a regular value
of hω,z. For example, when (ω2 > 0, ω3 > 0; z > 0) two strata appear: the origin point and
the rest of the space. In figure 2 the foliation of Tz,3 is displayed for these cases. Figure 3
shows one of the typical leaves of the case (ω2 > 0, ω3 < 0) and part of the foliation. Figure 4
shows the two-dimensional leaves when z = 0, for each of the nine cases that appear by
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ω2 < 0 ω3 > 0 ω2 = 0 ω3 > 0 ω2 > 0 ω3 > 0

ω2 < 0 ω3 = 0 ω2 = 0 ω3 = 0 ω2 > 0 ω3 = 0

ω2 < 0 ω3 < 0 ω2 = 0 ω3 < 0 ω2 > 0 ω3 < 0

Figure 4. Typical leaves and foliation of Tz,3 in the nondeformed case (z = 0).

considering the different signs of ω2 and ω3. In the nondeformed case the study is reduced
essentially to classifying the family of quadrics

ω13α
2
1 + ω23α

2
2 + α2

3 + c = 0.

When c 	= 0 every connected component constitutes a two-dimensional orbit of the action,
but for c = 0 zero-dimensional orbits appear.

In figure 5 typical leaves of the deformed case z > 0 are displayed. As one can observe
no qualitative differences are seen with respect to the nondeformed case. The leaves appearing
in the cases with z 	= 0 are homotopic deformations of the corresponding cases with z = 0.

In these figures the symmetry exhibited by the leaves of each foliation can be observed: in
the last column there is rotation symmetry with respect to the vertical axis, in the second
column there is translation symmetry along one of the horizontal axes and in the first
column there is symmetry with respect to hyperbolic rotations generated by the action of the
generator J12.
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ω2 < 0 ω3 > 0 ω2 = 0 ω3 > 0 ω2 > 0 ω3 > 0

ω2 < 0 ω3 = 0 ω2 = 0 ω3 = 0 ω2 > 0 ω3 = 0

ω2 < 0 ω3 < 0 ω2 = 0 ω3 < 0 ω2 > 0 ω3 < 0

Figure 5. Typical leaves and foliation of Tz,3 for z > 0.

Expressions (3.2) and (3.15) allow us to describe the one-parameter flows associated with
the generators. For Ĵ 12 a linear action is obtained,

�t
12(α1, α2, α3) = (

Cω12(t)α1 − Sω12(t)α2, ω12Sω12(t)α1 + Cω12(t)α2, α3
)

unlike what happens for Ĵ 13 and Ĵ 23

�t
13(α1, α2, α3) =


−

[
sinh(zα3) + z2

2

(
ω13α

2
1 + ω23α

2
2

)
ezα3

]
Sω13(t) + zα2Cω13(t)

zF13(α, t)
,

α2 ezα3

F13(α, t)
,

1

z
ln F13(α, t)
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Figure 6. Foliations of the typical leaf for (ω2 > 0, ω3 > 0; z > 0) induced by �12 (left) and �13
(right).

Figure 7. Foliations of a multiply connected leaf for (ω2 > 0, ω3 < 0; z > 0) induced by: �12
(left) and �13 (right together with the first one).

�t
23(α1, α2, α3) =


 α1 ezα3

F23(α, t)
,

−
[
sinh(zα3) + z2

2

(
ω13α

2
1 + ω23α

2
2

)
ezα3

]
Sω23(t) + zα2Cω23(t)

zF23(α, t)
,

1

z
ln F23(α, t)




where

Fi3(α, t) =
[

cosh(zα3) +
z2

2

(
ω13α

2
1 + ω23α

2
2

)
ezα3

]

+

[
sinh(zα3) − z2

2

(
ω13α

2
1 + ω23α

2
2

)
ezα3

]
Cωi3(t) + zωi3αi ezα3Sωi3(t).

Note that if ω3 = 0 then �t
13 and �t

23 are translations which generate the planes of the central
row of figures 4 and 5.

The action of the one-parameter subgroups gives a new foliation of the two-dimensional
leaves presented in the previous subsection. Figures 6–8 show the foliation of leaves of some
of the algebras of the family considered.

The curves that appear in the foliation due to Ĵ 13, for example, may be interpreted as the
intersection of the surfaces determined by the invariants

ω13P
2
1 ezP3 + ω23P

2
2 ezP3 +

[
sin
(

z
2P3

)
z
2

]2

P2 ezP3 .
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Figure 8. Foliations of simple connected leaves for (ω2 > 0, ω3 < 0; z > 0) induced by: �12
(left) and �13 (right).

z = 0 z > 0

Figure 9. Intersection of the surfaces determined by the invariants for (ω2 > 0, ω3 > 0).

In figures 9–11 these intersections for different signs of ω2 and ω3 are displayed. In each
figure, the nondeformed case as well as the deformed case are presented.

Note that the kinds of intersection are qualitatively the same in the deformed and
nondeformed cases in figures 9 and 10. However, the last row of figure 11 does not have
a nondeformed counterpart. These kinds of intersection are responsible for the appearance of
the diagrams corresponding to the cases (a < 0, b = 0), (a > 0, b = 0), (a < 0, b < 0) and
(a > 0, b < 0) in figure 1.

In summary, all the qualitative characteristics relative to the deformation with respect to
the flow of the fields Ĵ ij , appear in the case N = 3.

5. Concluding remarks

It is worth noting that the reinterpretation of the bicrossproduct structure H = U(K)��
Uz(L), in the case that Uz(L) is a commutative (but noncocommutative) Hopf algebra, as
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z= 0 z > 0

Figure 10. Intersection of the surfaces determined by the invariants for (ω2 < 0, ω3 > 0).

H = U(K)�� Fun(Lz) allows us to carry the action determining the bicrossproduct to an
action of the group K on Lz.

For the algebras involved in this work, in the deformed case, i.e. z 	= 0, the above-
mentioned action is local and nonlinear although in the opposite case the action is global and
linear.

The flows have been obtained by studying the case of ωi > 0. An analytical dependence
of the flow on the parameters ωi is observed, which makes it unnecessary to repeat the
computations for the other values of ωi . This result is very interesting since the structure of
the orbit space of the action of SOω2,ω3,...,ωN

(N) on Tz,N is very complicated, which makes it
difficult to obtain directly the flows for each particular case.

In [5], the flows have been used for the computation of the induced representations for the
Uz(isoω(2)). For higher dimensions the problem of constructing the induced representations
is very cumbersome and it is still an open problem.

The CK family Uz(isoω2,ω3(3)) contains, for instance, the q-Poincaré algebra (ω2 < 0,

ω3 > 0), (ω2 > 0, ω3 < 0), (ω2 < 0, ω3 < 0), the q-Galilei algebra (ω2 = 0, ω3 > 0)

and the q-Euclidean algebra (ω2 > 0, ω3 > 0). For a physical meaning of their generators
see [11].
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z = 0

z > 0

z > 0

Figure 11. Intersection of the surfaces determined by the invariants for (ω2 > 0, ω3 < 0).

We finish with the following remarks about the system (3.10):

(1) The second-order systems associated with (3.10),

ẍ = −axẋ − a(1 + 2x + ax2)x ÿ = − 1
2 ẏ2 − 1

2a(1 + b e−2y)

can be interpreted in both cases as moving objects over a straight line under the action
of forces depending on the position and the velocity. In figure 12 the time evolution is
represented for some significant cases.

(2) The system (3.10) is associated with the vector field over R
2

Xa,b =
[
−1

2
ax2 − 1

2
+

1

2
b e−2y

]
∂

∂x
+ ax

∂

∂y

which admits a Hamiltonian description as we are going to prove. Obviously, the pair (x, y) is
not a chart of canonical coordinates since the 1-form obtained by the contraction of the vector
field and the symplectic 2-form associated with this chart (Xa,b�(dx ∧ dy)) are not exact.
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a > 0 b > 0 a < 0 b = 0 a < 0 b < 0

Figure 12. Time evolution of the systems x(t) (continuous lines) and y(t) (dotted lines).

Hence, let us consider a general symplectic 2-form ω =  dx ∧ dy, with  to be determined.
Since ha,b is an invariant of the system it is evident that the Hamiltonian of the system has to
be of the form h = f ◦ ha,b, with f : R → R, which is not unequivocally determined. The
vector field associated with h by means of the symplectic structure is fixed by Xh�ω = −dh.
So,

Xh = −f ′ ◦ ha,b


∂yha,b

∂

∂x
+

f ′ ◦ ha,b


∂xha,b

∂

∂y
.

Identifying Xh with Xa,b two equations are obtained, but only one is independent. Hence,

 = f ′ ◦ ha,b

∂xha,b

ax
= 2 eyf ′ ◦ ha,b.

The simple choice f (t) = t allows us to obtain the 2-form ω = 2 ey dx∧ dy that is independent
of the parameters a and b. With the above selection of f the Hamiltonian of Xa,b is the invariant
ha,b.
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